Thursday 2 March 2017

Bewegungsdurchschnittlich Niedrig

Mike, zuerst installieren R, wenn du noch nicht hast, rufe R und installiere das TeachingDemos Paket genau wie hängt von deinem System ab, lade das Paket mit der Bibliothek TeachingDemos dann tippe, um die Hilfeseite aufzurufen, um zu sehen, wie man es läuft, kannst du zu scrollen Die Unterseite, wo das Beispiel ist und kopieren und fügen Sie diesen Code zu R s Befehlszeile, um die Beispiele zu sehen, dann laufen mit Ihren eigenen Daten, um weiter zu erforschen Greg Snow Mar 23 12 bei 17 15.Here ist eine einfache, aber detaillierte Antwort Modell passt eine Beziehung über alle Datenpunkte Dieses Modell kann erste Ordnung eine andere Bedeutung von linearen oder polynomischen, um Krümmung Rechnung zu tragen, oder mit Splines, um für verschiedene Regionen mit einem anderen regulierenden Modell Rechnung zu tragen. LOESS fit ist eine lokal bewegte gewichtete Regression Basierend auf den ursprünglichen Datenpunkten Was bedeutet das. Ein LOESS-Fit gibt die ursprünglichen X - und Y-Werte sowie einen Satz von Output-X-Werten ein, für die neue Y-Werte berechnet werden, wobei normalerweise die gleichen X-Werte für beide, aber oft weniger X verwendet werden Werte werden für angepasste XY-Paare verwendet, da die erhöhte Berechnung erforderlich ist. Für jeden Ausgangswert X wird ein Teil der Eingangsdaten verwendet, um eine Anpassung zu berechnen. Der Teil der Daten, im Allgemeinen 25 bis 100, aber typischerweise 33 oder 50, ist lokal , Dh es ist der Teil der ursprünglichen Daten am nächsten zu jedem einzelnen Ausgang X-Wert Es ist ein beweglicher Sitz, weil jeder Ausgang X-Wert erfordert eine andere Teilmenge der ursprünglichen Daten, mit verschiedenen Gewichten siehe nächsten Absatz. Diese Teilmenge von Eingabedaten Punkte Wird verwendet, um eine gewichtete Regression durchzuführen, wobei Punkte am nächsten zu dem ausgegebenen X-Wert bei größerem Gewicht liegen. Diese Regression ist in der Regel erster Ordnung zweiter Ordnung oder höher möglich, erfordert aber eine größere Berechnungsleistung. Der Y-Wert dieser gewichteten Regression, die am Ausgang X berechnet wird, ist Verwendet als Modell s Y-Wert für diesen X-Wert. Die Regression wird an jedem Ausgang X-Wert neu berechnet, um einen vollständigen Satz von Output-Y-Werten zu erzeugen. Erweiterte Feb 21 15 bei 21 08.LOESS ist eine von vielen modernen Modellierungsmethoden, die aufbilden Klassische Methoden wie lineare und nichtlineare Reklamationen der kleinsten Quadrate Moderne Regressionsmethoden sollen Situationen ansprechen, in denen die klassischen Prozeduren nicht gut funktionieren oder nicht ohne unnötige Arbeit effektiv angewendet werden können. LOESS kombiniert viel von der Einfachheit der linearen Reklamation der kleinsten Quadrate mit der Flexibilität Der nichtlinearen Regression Es tut dies, indem man einfache Modelle an lokalisierte Teilmengen der Daten anbringt, um eine Funktion aufzubauen, die den deterministischen Teil der Variation des Datenpunktes nach Punkt beschreibt. In der Tat ist eine der Hauptattraktionen dieser Methode, dass die Daten Analyst ist nicht verpflichtet, eine globale Funktion eines beliebigen Formulars anzugeben, um ein Modell an die Daten anzupassen, nur um Segmente der Daten zu passen. Der Kompromiss für diese Merkmale ist eine erhöhte Berechnung Da es so rechnerisch intensiv war, wäre LOESS praktisch gewesen Unmöglich in der Ära zu verwenden, wenn die kleinste Quadrate Regression entwickelt wurde Die meisten anderen modernen Methoden für die Prozessmodellierung sind ähnlich wie LOESS in dieser Hinsicht Diese Methoden wurden bewusst entworfen, um unsere derzeitige Berechnungsfähigkeit in vollem Umfang zu nutzen, um Ziele zu erreichen, die nicht leicht erreicht werden können Durch traditionelle Ansätze. Definition eines LOESS Model. LOESS, ursprünglich von Cleveland 1979 vorgeschlagen und weiter entwickelt von Cleveland und Devlin 1988 speziell bezeichnet eine Methode, die etwas beschreibender als lokal gewichtete polynomiale Regression bekannt ist An jedem Punkt in der Datensatz ein Low - Grad-Polynom ist an eine Teilmenge der Daten angepasst, mit erläuternden Variablenwerten in der Nähe des Punktes, dessen Antwort geschätzt wird. Das Polynom passt mit gewichteten kleinsten Quadraten, was mehr Gewicht auf Punkte in der Nähe des Punktes gibt, dessen Antwort geschätzt wird und weniger Gewicht auf Punkte Weiter weg Der Wert der Regressionsfunktion für den Punkt wird dann durch Auswertung des lokalen Polynoms unter Verwendung der erläuternden Variablenwerte für diesen Datenpunkt erhalten. Der LOESS-Fit ist abgeschlossen, nachdem Regressionsfunktionswerte für jeden der n Datenpunkte berechnet wurden. Viele der Details dieser Methode, wie zB der Grad des Polynommodells und der Gewichte, sind flexibel Der Bereich der Auswahlmöglichkeiten für jeden Teil der Methode und die typischen Vorgaben werden im Folgenden kurz diskutiert. Lokalisierte Datensätze der Daten Die Teilmengen der Daten, die für jede gewichtete verwendet werden Die kleinsten Quadrate, die in LOESS passen, werden durch einen nächsten Nachbar-Algorithmus bestimmt. Eine benutzerdefinierte Eingabe in die Prozedur, die Bandbreite oder Glättungsparameter genannt wird, bestimmt, wieviel der Daten für jedes lokale Polynom verwendet wird. Der Glättungsparameter q ist eine Zahl zwischen d 1 n und 1, wobei d den Grad des lokalen Polynoms angibt. Der Wert von q ist der Anteil der Daten, die in jeder Passung verwendet werden. Die Teilmenge der Daten, die in jedem gewichteten kleinsten Quadraten-Fit verwendet wird, besteht aus dem nq, der auf die nächstgrößten ganzzahligen Punkte gerundet ist Deren erklärende Variablenwerte dem Punkt am nächsten liegen, an dem die Antwort geschätzt wird. Q heißt Glättungsparameter, weil er die Flexibilität der LOESS-Regressionsfunktion steuert. Große Werte von q erzeugen die glattesten Funktionen, die das Ganze als Reaktion auf Schwankungen der Daten wackeln. Je kleiner q ist, desto näher wird die Regressionsfunktion den Daten entsprechen Die Verwendung eines zu kleinen Wertes des Glättungsparameters ist jedoch nicht wünschenswert, da die Regressionsfunktion schließlich beginnt, den zufälligen Fehler in den Daten zu erfassen. Nützliche Werte des Glättungsparameters liegen typischerweise im Bereich von 0 25 bis 0 5 für die meisten LOESS-Anwendungen. Degree of Local Polynomials. Die lokalen Polynome passen zu jeder Teilmenge der Daten sind fast immer von ersten oder zweiten Grad, der entweder lokal linear in der Geraden Sinne oder lokal quadratisch Mit einem Null-Grad-Polynom verwandelt LOESS in einen gewichteten gleitenden Durchschnitt Ein solches einfaches lokales Modell könnte für einige Situationen gut funktionieren, darf aber nicht immer der zugrunde liegenden Funktion genügend angenähert werden. Hochrangige Polynome würden in der Theorie arbeiten, aber Renditemodelle, die nicht wirklich im Geist von LOESS LOESS sind, basiert auf den Ideen, die Jede Funktion kann in einer kleinen Nachbarschaft durch ein niederwertiges Polynom gut angenähert werden und diese einfachen Modelle können leicht auf Daten eingelassen werden. Hochgradige Polynome würden dazu neigen, die Daten in jeder Teilmenge zu übertreiben und sind numerisch instabil, so dass genaue Berechnungen schwierig sind Die Gewichtsfunktion gibt den Datenpunkten, die dem Punkt der Schätzung am nächsten sind, und dem geringsten Gewicht an den am weitesten entfernten Datenpunkten das Gewicht. Die Verwendung der Gewichte beruht auf der Idee, die in der erklärenden Variablen nahe beieinander liegt Raum sind eher auf einander in einer einfachen Weise verknüpft als Punkte, die weiter voneinander entfernt sind. Nach dieser Logik werden Punkte, die wahrscheinlich dem lokalen Modell folgen, am besten den lokalen Modellparameter einschätzen, die meisten Punkte, die weniger wahrscheinlich sind, tatsächlich zu entsprechen Auf das lokale Modell haben weniger Einfluss auf die lokalen Modellparameter Schätzungen. Die traditionelle Gewicht-Funktion für LOESS verwendet wird, ist die Tri-Cube-Gewicht-Funktion, wx links 1 - x 3 3 mbox. Moving durchschnittliche und exponentielle Glättung Modelle. Ein erster Schritt in Übergangsmodelle, zufällige Spaziergänge und lineare Trendmodelle, Nicht-Sektionsmuster und Trends können mit einem gleitenden Durchschnitt oder Glättungsmodul extrapoliert werden. Die Grundannahme hinter Mittelwertbildung und Glättung von Modellen ist, dass die Zeitreihe lokal stationär mit einem langsam variierenden Mittel ist Daher nehmen wir einen bewegten lokalen Durchschnitt, um den aktuellen Wert des Mittelwerts abzuschätzen und dann das als die Prognose für die nahe Zukunft zu verwenden. Dies kann als Kompromiss zwischen dem mittleren Modell und dem zufälligen Walk-ohne-Drift-Modell angesehen werden Gleiche Strategie kann verwendet werden, um einen lokalen Trend zu schätzen und zu extrapolieren. Ein gleitender Durchschnitt wird oft als geglättete Version der ursprünglichen Serie bezeichnet, weil die kurzfristige Mittelung die Wirkung hat, die Beulen in der ursprünglichen Reihe zu glätten. Durch Einstellen des Grades der Glättung der Breite Des gleitenden Durchschnitts, können wir hoffen, eine Art von optimalen Gleichgewicht zwischen der Leistung der mittleren und zufälligen Walk-Modelle zu schlagen Die einfachste Art von Mittelwert-Modell ist die. Einfache gleichgewichtete Moving Average. Die Prognose für den Wert von Y zur Zeit T 1, die zum Zeitpunkt t gemacht wird, entspricht dem einfachen Durchschnitt der letzten m Beobachtungen. Hier und anderswo verwende ich das Symbol Y-Hut, um für eine Prognose der Zeitreihe Y zu stehen, die am frühestmöglichen früheren Datum durch ein gegebenes Modell gemacht wurde. Dieser Durchschnitt ist in der Periode & lgr; m 1 2 zentriert, was bedeutet, dass die Schätzung von Das lokale Mittel neigt dazu, hinter dem wahren Wert des lokalen Mittels um etwa m 1 2 Perioden zu liegen. So sagen wir, dass das Durchschnittsalter der Daten im einfachen gleitenden Durchschnitt m 1 2 relativ zu dem Zeitraum ist, für den die Prognose berechnet wird Dies ist die Zeitspanne, mit der die Prognosen dazu neigen, hinter den Wendepunkten in den Daten zu liegen. Zum Beispiel, wenn Sie die letzten 5 Werte mittelschätzen, werden die Prognosen etwa 3 Perioden spät in Reaktion auf Wendepunkte sein. Beachten Sie, dass wenn m 1, Das einfache gleitende durchschnittliche SMA-Modell entspricht dem zufälligen Walk-Modell ohne Wachstum Wenn m sehr groß ist, vergleichbar mit der Länge der Schätzperiode ist das SMA-Modell gleichbedeutend mit dem mittleren Modell Wie bei jedem Parameter eines Prognosemodells ist es üblich Um den Wert von k anzupassen, um die bestmögliche Anpassung an die Daten zu erhalten, dh die kleinsten Prognosefehler im Durchschnitt. Hierbei handelt es sich um ein Beispiel für eine Serie, die zufällige Schwankungen um ein langsam variierendes Mittel zeigt. Zuerst versuchen wir es zu versuchen Passt es mit einem zufälligen Spaziergang Modell, das entspricht einem einfachen gleitenden Durchschnitt von 1 Term. Die zufällige Spaziergang Modell reagiert sehr schnell auf Änderungen in der Serie, aber in diesem Fall nimmt es viel von dem Rauschen in den Daten die zufälligen Schwankungen als Gut wie das Signal das lokale Mittel Wenn wir stattdessen versuchen, einen einfachen gleitenden Durchschnitt von 5 Begriffen, erhalten wir eine glattere aussehende Menge von Prognosen. Die 5-Term einfache gleitenden Durchschnitt liefert deutlich kleinere Fehler als die zufällige Walk-Modell in diesem Fall Der Durchschnitt Alter der Daten in dieser Prognose ist 3 5 1 2, so dass es dazu neigt, hinter Wendepunkte um etwa drei Perioden zurückzugehen. Zum Beispiel scheint ein Abschwung in der Periode 21 aufgetreten zu sein, aber die Prognosen drehen sich nicht um einige Zeit später. Notice, dass die Langzeitprognosen aus dem SMA-Modell eine horizontale Gerade sind, genauso wie im zufälligen Spaziergangmodell. Das SMA-Modell geht davon aus, dass es keinen Trend in den Daten gibt. Allerdings sind die Prognosen aus dem zufälligen Walk-Modell Die Prognosen des SMA-Modells sind gleich einem gewichteten Durchschnitt der letzten Werte. Die von Statgraphics für die Langzeitprognosen des einfachen gleitenden Durchschnittes berechneten Konfidenzgrenzen werden nicht größer, wenn der Prognosehorizont zunimmt Das ist offensichtlich nicht richtig Leider gibt es keine zugrunde liegende statistische Theorie, die uns sagt, wie sich die Konfidenzintervalle für dieses Modell erweitern sollten. Allerdings ist es nicht zu schwer, empirische Schätzungen der Vertrauensgrenzen für die längerfristigen Prognosen zu berechnen. Sie könnten eine Kalkulationstabelle einrichten, in der das SMA-Modell verwendet werden würde, um 2 Schritte voraus, 3 Schritte voraus, etc. innerhalb der historischen Datenprobe zu prognostizieren. Sie konnten dann die Beispiel-Standardabweichungen der Fehler bei jedem Prognosehorizont berechnen und dann Vertrauen aufbauen Intervalle für längerfristige Prognosen durch Hinzufügen und Subtrahieren von Vielfachen der entsprechenden Standardabweichung. Wenn wir einen 9-fach einfach gleitenden Durchschnitt versuchen, bekommen wir noch glattere Prognosen und mehr von einem nacheilenden Effekt. Das Durchschnittsalter beträgt nun 5 Perioden 9 1 2 Wenn wir einen 19-fachen gleitenden Durchschnitt nehmen, steigt das Durchschnittsalter auf 10.Notice, dass die Prognosen nun hinter den Wendepunkten um etwa 10 Perioden zurückbleiben. Welches Maß an Glättung ist am besten für diese Serie Hier ist eine Tabelle, die vergleicht Ihre Fehlerstatistik, auch ein 3-Term-Durchschnitt. Model C, der 5-fache gleitende Durchschnitt, ergibt den niedrigsten Wert von RMSE um eine kleine Marge über die 3-Term und 9-Term-Mittelwerte, und ihre anderen Statistiken sind fast identisch Also, unter Modellen mit sehr ähnlichen Fehlerstatistiken, können wir wählen, ob wir lieber ein wenig mehr Reaktionsfähigkeit oder ein wenig mehr Glätte in den Prognosen zurück zum Anfang der Seite. Brown s Einfache Exponential Glättung exponentiell gewichteten gleitenden Durchschnitt. Das einfache gleitende durchschnittliche Modell Oben beschrieben hat die unerwünschte Eigenschaft, dass es die letzten k Beobachtungen gleichermaßen behandelt und alle vorherigen Beobachtungen vollständig ignoriert. Intuitiv sollten die vergangenen Daten in einer allmählicheren Weise diskontiert werden - zum Beispiel sollte die jüngste Beobachtung ein bisschen mehr Gewicht als das zweitbeste erhalten Jüngsten, und die 2. jüngsten sollte ein wenig mehr Gewicht als die 3. letzte, und so weiter Die einfache exponentielle Glättung SES-Modell erreicht dies. Let bezeichnen eine Glättung Konstante eine Zahl zwischen 0 und 1 Eine Möglichkeit, das Modell zu schreiben ist zu Definieren eine Reihe L, die die aktuelle Ebene repräsentiert, dh der mittlere Mittelwert der Reihe, wie sie von den Daten bis zur Gegenwart geschätzt wird. Der Wert von L zum Zeitpunkt t wird rekursiv von seinem eigenen vorherigen Wert wie dieser berechnet. Damit ist der aktuelle geglättete Wert ein Interpolation zwischen dem vorherigen geglätteten Wert und der aktuellen Beobachtung, bei der die Nähe des interpolierten Wertes auf die aktuellste Beobachtung kontrolliert wird. Die Prognose für die nächste Periode ist einfach der aktuelle geglättete Wert. Gleichzeitig können wir die nächste Prognose direkt in der Vergangenheit ausdrücken Prognosen und vorherige Beobachtungen in einer der folgenden gleichwertigen Versionen In der ersten Version ist die Prognose eine Interpolation zwischen vorheriger Prognose und vorheriger Beobachtung. In der zweiten Version wird die nächste Prognose durch Anpassung der bisherigen Prognose in Richtung der vorherigen erhalten Fehler durch einen Bruchteil. Ist der Fehler zum Zeitpunkt t gemacht In der dritten Version ist die Prognose ein exponentiell gewichteter, dh ermäßigter gleitender Durchschnitt mit Rabattfaktor 1.Die Interpolationsversion der Prognoseformel ist die einfachste zu verwenden, wenn du die implementierst Modell auf einer Tabellenkalkulation passt es in eine einzelne Zelle und enthält Zelle Referenzen, die auf die vorherige Prognose, die vorherige Beobachtung und die Zelle, wo der Wert von gespeichert ist. Hinweis, dass wenn 1, ist das SES-Modell gleichbedeutend mit einem zufälligen Spaziergang Modell ohne Wachstum Wenn 0, entspricht das SES-Modell dem Mittelmodell, vorausgesetzt, dass der erste geglättete Wert gleich dem mittleren Rücksprung auf der Oberseite gesetzt ist. Das Durchschnittsalter der Daten in der einfach-exponentiellen Glättungsprognose ist 1 relativ zu Die Periode, für die die Prognose berechnet wird, soll nicht offensichtlich sein, aber es lässt sich leicht durch die Auswertung einer unendlichen Reihe zeigen. Die einfache gleitende Durchschnittsprognose neigt dazu, hinter Wendepunkten um etwa 1 Perioden zurückzukehren. Zum Beispiel, wenn 0 5 Die Verzögerung beträgt 2 Perioden, wenn 0 2 die Verzögerung 5 Perioden beträgt, wenn 0 1 die Verzögerung 10 Perioden und so weiter ist. Für ein gegebenes Durchschnittsalter, dh eine Verzögerung, ist die einfache exponentielle Glättung der SES-Prognose dem überlegenen gleitenden Durchschnitt etwas überlegen SMA-Prognose, weil es relativ viel Gewicht auf die jüngste Beobachtung - es ist etwas mehr reagiert auf Veränderungen in der jüngsten Vergangenheit Zum Beispiel ein SMA-Modell mit 9 Begriffe und ein SES-Modell mit 0 2 haben beide ein Durchschnittsalter von 5 für die Daten in ihren Prognosen, aber das SES-Modell legt mehr Gewicht auf die letzten 3 Werte als das SMA-Modell und gleichzeitig ist es nicht ganz vergessen, Werte mehr als 9 Perioden alt, wie in dieser Tabelle gezeigt Wichtiger Vorteil des SES-Modells gegenüber dem SMA-Modell ist, dass das SES-Modell einen Glättungsparameter verwendet, der stufenlos variabel ist, so dass er durch den Einsatz eines Solver-Algorithmus leicht optimiert werden kann, um den mittleren quadratischen Fehler zu minimieren. Der optimale Wert im SES-Modell dafür Die Serie erweist sich als 0 2961, wie hier gezeigt. Das Durchschnittsalter der Daten in dieser Prognose beträgt 1 0 2961 3 4 Perioden, was ähnlich ist wie bei einem 6-fach einfach gleitenden Durchschnitt. Die langfristigen Prognosen aus der SES-Modell sind eine horizontale Gerade wie im SMA-Modell und das zufällige Spaziergangmodell ohne Wachstum. Allerdings ist zu beachten, dass die von Statgraphics berechneten Konfidenzintervalle in einer vernünftig aussehenden Weise abweichen und dass sie wesentlich schmaler sind als die Konfidenzintervalle für die Zufälliges Spaziergang Modell Das SES-Modell geht davon aus, dass die Serie etwas vorhersehbarer ist als das zufällige Spaziergangmodell. Ein SES-Modell ist eigentlich ein Spezialfall eines ARIMA-Modells, so dass die statistische Theorie der ARIMA-Modelle eine fundierte Grundlage für die Berechnung von Konfidenzintervallen für die SES-Modell Insbesondere ist ein SES-Modell ein ARIMA-Modell mit einer nicht-seasonalen Differenz, einem MA 1-Term und keinem konstanten Term, der sonst als ARIMA-0,1,1-Modell ohne Konstante bekannt ist. Der MA 1 - Koeffizient im ARIMA-Modell entspricht dem Menge 1 im SES-Modell Wenn Sie beispielsweise ein ARIMA-0,1,1-Modell ohne Konstante an die hier analysierte Baureihe anpassen, erweist sich der geschätzte MA 1 - Koeffizient auf 0 7029, was fast genau ein minus 0 2961 ist. Es ist möglich, die Annahme eines nicht-null konstanten linearen Trends zu einem SES-Modell hinzuzufügen. Dazu geben Sie einfach ein ARIMA-Modell mit einer nicht-seasonalen Differenz und einem MA 1-Term mit einer Konstante, dh einem ARIMA 0,1,1-Modell an Mit konstanten Die langfristigen Prognosen haben dann einen Trend, der gleich der durchschnittlichen Tendenz ist, die über die gesamte Schätzperiode beobachtet wird. Sie können dies nicht in Verbindung mit saisonaler Anpassung tun, da die saisonalen Anpassungsoptionen deaktiviert sind, wenn der Modelltyp auf ARIMA gesetzt ist Allerdings können Sie einen konstanten, langfristigen exponentiellen Trend zu einem einfachen exponentiellen Glättungsmodell mit oder ohne saisonale Anpassung hinzufügen, indem Sie die Inflationsanpassungsoption im Prognoseverfahren verwenden. Die entsprechende Inflationsrate pro Wachstumsrate pro Periode kann als Steilheitskoeffizient in a bezeichnet werden Lineares Trendmodell, das an die Daten in Verbindung mit einer natürlichen Logarithmus-Transformation angepasst ist, oder es kann auf anderen, unabhängigen Informationen über langfristige Wachstumsaussichten basieren. Zurück zum Seitenanfang. Brown s Linear ie doppelte exponentielle Glättung. Die SMA Modelle und SES Modelle gehen davon aus, dass es in den Daten, die in der Regel ok oder zumindest nicht zu schlecht sind, keine Tendenz gibt, wenn die Daten relativ laut sind, und sie können modifiziert werden, um einen konstanten linearen Trend zu integrieren Wie oben gezeigt Was ist mit kurzfristigen Trends Wenn eine Serie eine unterschiedliche Wachstumsrate oder ein zyklisches Muster zeigt, das sich deutlich gegen den Lärm auszeichnet, und wenn es notwendig ist, mehr als einen Zeitraum voraus zu prognostizieren, dann die Schätzung eines lokalen Trends Könnte auch ein Problem sein Das einfache exponentielle Glättungsmodell kann verallgemeinert werden, um ein lineares exponentielles Glättungs-LES-Modell zu erhalten, das lokale Schätzungen von Level und Trend berechnet. Das einfachste zeitvariable Trendmodell ist das lineare, exponentielle Glättungsmodell von Brown, das zwei verschiedene verwendet Geglättete Serien, die zu verschiedenen Zeitpunkten zentriert sind Die Prognoseformel basiert auf einer Extrapolation einer Linie durch die beiden Zentren Eine ausgefeiltere Version dieses Modells, Holt s, wird unten diskutiert. Die algebraische Form von Brown s lineares exponentielles Glättungsmodell , Wie die des einfachen exponentiellen Glättungsmodells, kann in einer Anzahl von verschiedenen, aber äquivalenten Formen ausgedrückt werden. Die Standardform dieses Modells wird gewöhnlich wie folgt ausgedrückt. Sei S die einfach geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung der Reihe Y erhalten wird Ist der Wert von S in der Periode t gegeben durch. Erinnern Sie sich, dass unter einfacher exponentieller Glättung dies die Prognose für Y in der Periode t 1 sein würde. Dann sei S die doppelt geglättete Reihe, die durch Anwendung einer einfachen exponentiellen Glättung unter Verwendung derselben zu der Reihe S erhalten wird. Zunächst ist die Prognose für Y tk für irgendwelche K & sub1 ;, ist gegeben durch. Dies ergibt e 1 0, dh ein wenig zu betrügen, und die erste Prognose gleich der tatsächlichen ersten Beobachtung und e 2 Y 2 Y 1, wonach Prognosen unter Verwendung der obigen Gleichung erzeugt werden, ergibt die gleichen angepassten Werte Als die auf S und S basierende Formel, wenn diese mit S 1 S 1 Y 1 gestartet wurden Diese Version des Modells wird auf der nächsten Seite verwendet, die eine Kombination von exponentieller Glättung mit saisonaler Anpassung veranschaulicht. Holt s Linear Exponential Smoothing. Brown S LES-Modell berechnet lokale Schätzungen von Level und Trend durch Glättung der jüngsten Daten, aber die Tatsache, dass es tut dies mit einem einzigen Glättungsparameter stellt eine Einschränkung auf die Datenmuster, dass es in der Lage ist, die Ebene und Trend sind nicht erlaubt, variieren Bei unabhängigen Raten Holt s LES Modell adressiert dieses Problem durch die Einbeziehung von zwei Glättungskonstanten, eine für die Ebene und eine für den Trend Zu jeder Zeit t, wie in Browns Modell, gibt es eine Schätzung L t der lokalen Ebene und eine Schätzung T t der lokalen Tendenz Hier werden sie rekursiv aus dem Wert von Y, der zum Zeitpunkt t beobachtet wurde, und den vorherigen Schätzungen des Niveaus und des Tendenzes durch zwei Gleichungen berechnet, die eine exponentielle Glättung für sie separat anwenden. Wenn das geschätzte Niveau und der Trend zur Zeit t - 1 sind L t 1 bzw. T t-1, so ist die Prognose für Y t, die zum Zeitpunkt t-1 gemacht worden wäre, gleich L t-1 T t-1 Wenn der Istwert beobachtet wird, wird die aktualisierte Schätzung von Wird der Pegel rekursiv durch Interpolation zwischen Y t und seiner Prognose L t-1 T t-1 unter Verwendung von Gewichten von und 1 berechnet. Die Änderung des geschätzten Pegels, nämlich L t L t 1, kann als eine laute Messung von interpretiert werden Der Trend zum Zeitpunkt t Die aktualisierte Schätzung des Trends wird dann rekursiv durch Interpolation zwischen L t L t 1 und der vorherigen Schätzung des Trends T t-1 unter Verwendung von Gewichten von und 1 berechnet. Die Interpretation der Trend-Glättungskonstante ist Analog zu dem der Pegel-Glättung Konstante Modelle mit kleinen Werten davon ausgehen, dass sich der Trend nur sehr langsam im Laufe der Zeit ändert, während Modelle mit größeren davon ausgehen, dass es sich schneller ändert Ein Modell mit einem großen glaubt, dass die ferne Zukunft sehr unsicher ist, Denn Fehler bei der Trendschätzung werden bei der Prognose von mehr als einer Periode bei der Vorhersage sehr wichtig. Zum Anfang der Seite. Die Glättungskonstanten und können auf die übliche Weise geschätzt werden, indem der mittlere quadratische Fehler der 1-Schritt-Prognose minimiert wird In Statgraphics, die Schätzungen erweisen sich als 0 3048 und 0 008 Der sehr kleine Wert der Mittel, dass das Modell eine sehr geringe Veränderung im Trend von einer Periode zum nächsten annimmt, so grundsätzlich versucht dieses Modell, einen langfristigen Trend abzuschätzen In Analogie zum Begriff des Durchschnittsalters der Daten, die bei der Schätzung der lokalen Ebene der Serie verwendet wird, ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet wird, proportional zu 1, wenn auch nicht genau gleich Dieser Fall entpuppt sich 1 0 006 125 Dies ist eine sehr genaue Zahl, da die Genauigkeit der Schätzung von isn t wirklich 3 Dezimalstellen, aber es ist von der gleichen allgemeinen Größenordnung wie die Stichprobengröße von 100, so Dieses Modell ist durchschnittlich über eine ganze Menge Geschichte bei der Schätzung der Trend Die Prognose-Plot unten zeigt, dass das LES-Modell schätzt einen etwas größeren lokalen Trend am Ende der Serie als die konstante Tendenz im SES Trend-Modell geschätzt Auch der geschätzte Wert Von ist fast identisch mit dem, der durch die Montage des SES-Modells mit oder ohne Trend erhalten wird, also ist das fast das gleiche Modell. Jetzt sehen diese wie vernünftige Prognosen für ein Modell aus, das angeblich einen lokalen Trend schätzen soll Handlung, es sieht so aus, als ob der lokale Trend am Ende der Serie nach unten gegangen ist Was passiert ist Die Parameter dieses Modells wurden durch Minimierung des quadratischen Fehlers von 1-Schritt-Prognosen, nicht längerfristigen Prognosen, in denen geschätzt Fall der Trend macht nicht viel Unterschied Wenn alles, was Sie suchen, sind 1-Schritt-vor-Fehler, sehen Sie nicht das größere Bild der Trends über sagen, 10 oder 20 Perioden Um dieses Modell mehr im Einklang mit unserem Augapfel-Extrapolation der Daten, können wir die Trend-Glättung konstant manuell anpassen, so dass es eine kürzere Grundlinie für Trendschätzung verwendet. Wenn wir z. B. 0 1 setzen wollen, dann ist das Durchschnittsalter der Daten, die bei der Schätzung des lokalen Trends verwendet werden 10 Perioden, was bedeutet, dass wir durchschnittlich den Trend über die letzten 20 Perioden oder so Hier ist, was die Prognose Handlung aussieht, wenn wir 0 1 setzen, während halten 0 3 Dies sieht intuitiv vernünftig für diese Serie, obwohl es wahrscheinlich gefährlich zu extrapolieren ist Dieser Trend mehr als 10 Perioden in der Zukunft. Was über die Fehlerstatistiken Hier ist ein Modellvergleich für die beiden oben gezeigten Modelle sowie drei SES-Modelle Der optimale Wert des SES-Modells beträgt ca. 0 3, aber ähnliche Ergebnisse mit etwas Mehr oder weniger Ansprechverhalten werden mit 0 5 und 0 2 erhalten. Eine Holt s lineare Exp-Glättung mit alpha 0 3048 und beta 0 008. B Holt s lineare exp Glättung mit alpha 0 3 und beta 0 1. C Einfache exponentielle Glättung mit Alpha 0 5. D Einfache exponentielle Glättung mit alpha 0 3. E Einfache exponentielle Glättung mit alpha 0 2.Die Statistik ist nahezu identisch, so dass wir die Wahl nicht auf der Basis von 1-Schritt-Prognosefehlern innerhalb der Daten treffen können Beispiel Wir müssen auf andere Überlegungen zurückgreifen Wenn wir stark davon überzeugt sind, dass es sinnvoll ist, die aktuelle Trendschätzung auf das, was in den letzten 20 Perioden passiert ist, zu stützen, so können wir einen Fall für das LES-Modell mit 0 3 und 0 1 machen Wenn wir agnostisch darüber sein wollen, ob es einen lokalen Trend gibt, dann könnte eines der SES-Modelle leichter zu erklären sein und würde auch mehr Mittelwert der Prognosen für die nächsten 5 oder 10 Perioden geben. Zurück zum Seitenanfang. Welche Art der Trend-Extrapolation ist am besten horizontal oder linear Empirische Evidenz deutet darauf hin, dass, wenn die Daten bereits angepasst wurden, wenn nötig für die Inflation, dann kann es unvorstellbar sein, kurzfristige lineare Trends sehr weit in die Zukunft zu extrapolieren Trends offensichtlich heute können In der Zukunft aufgrund unterschiedlicher Ursachen wie Produktveralterung, zunehmender Konkurrenz und zyklischer Abschwünge oder Aufschwüngen in einer Branche zu senken. Aus diesem Grund führt die einfache exponentielle Glättung oftmals zu einem besseren Out-of-Sample, als es sonst zu erwarten wäre, trotz des naiven horizontalen Trends Extrapolation Gedämpfte Trendmodifikationen des linearen exponentiellen Glättungsmodells werden auch in der Praxis häufig verwendet, um eine Note des Konservatismus in seine Trendprojektionen einzuführen. Das gedämpfte LES-Modell kann als Spezialfall eines ARIMA-Modells, insbesondere eines ARIMA 1, implementiert werden , 1,2-Modell. Es ist möglich, Konfidenzintervalle um Langzeitprognosen zu ermitteln, die durch exponentielle Glättungsmodelle erzeugt werden, indem man sie als Sonderfälle von ARIMA-Modellen betrachtet. Vorsicht nicht alle Software berechnet Konfidenzintervalle für diese Modelle richtig Die Breite der Konfidenzintervalle Hängt von dem RMS-Fehler des Modells ab, ii die Art der Glättung einfach oder linear iii der Wert s der Glättungskonstante s und iv die Anzahl der vorausschauenden Perioden, die Sie prognostizieren Im Allgemeinen breiten sich die Intervalle schneller aus, SES-Modell und sie breiten sich viel schneller aus, wenn lineare und nicht einfache Glättung verwendet wird. Dieses Thema wird im ARIMA-Modell-Abschnitt der Notizen weiter unten diskutiert. Zurück zum Seitenanfang.


No comments:

Post a Comment